Ca(v)3.2 channel is a molecular substrate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide.
نویسندگان
چکیده
Although nitrous oxide (N(2)O; laughing gas) remains widely used as an anesthetic and analgesic in clinical practice, its cellular mechanisms of action remain inadequately understood. In this report, we examined the effects of N(2)O on voltage-gated Ca(2+) channels in acutely dissociated small sensory neurons of adult rat. At subanesthetic concentrations, N(2)O blocks low-voltage-activated, T-type Ca(2+) currents (T currents), but not high-voltage-activated (HVA) currents. This blockade of T currents was concentration dependent, with an IC(50) value of 45 +/- 13%, maximal block of 38 +/- 12%, and Hill coefficient of 2.6 +/- 1.0. No desensitization of the response or change in current kinetics was observed during N(2)O application. The magnitude of T current blockade by N(2)O does not seem to reflect any use- or voltage-dependent properties. In addition, T current blockade was not altered when intracellular GTP was replaced with guanosine 5'-(gamma-thio)triphosphate or guanosine 5'-0-(2-thiodiphosphate) suggesting a lack of involvement of G-proteins in the inhibition. N(2)O selectively blocked currents arising from the Ca(v)3.2 but not Ca(v)3.1 recombinant channels stably expressed in human embryonic kidney (HEK) cells in a concentration-dependent manner with an apparent affinity and potency similar to native dorsal root ganglion currents. Analogously, the block of Ca(v)3.2 T currents exhibited little voltage- or use-dependence. These data indicate that N(2)O selectively blocks T-type but not HVA Ca(2+) currents in small sensory neurons and Ca(v)3.2 currents in HEK cells at subanesthetic concentrations. Blockade of T currents may contribute to the anesthetic and/or analgesic effects of N(2)O.
منابع مشابه
CaV3.2 is the major molecular substrate for redox regulation of T-type Ca2+ channels in the rat and mouse thalamus.
Although T-type Ca(2+) channels in the thalamus play a crucial role in determining neuronal excitability and are involved in sensory processing and pathophysiology of epilepsy, little is known about the molecular mechanisms involved in their regulation. Here, we report that reducing agents, including endogenous sulfur-containing amino acid l-cysteine, selectively enhance native T-type currents ...
متن کاملRole of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat
Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...
متن کاملMolecular mechanisms of lipoic acid modulation of T-type calcium channels in pain pathway.
Alpha-lipoic acid (1,2-dithiolane-3-pentanoic acid; lipoic acid) is an endogenous compound used to treat pain disorders in humans, but its mechanisms of analgesic action are not well understood. Here, we show that lipoic acid selectively inhibited native Ca(V)3.2 T-type calcium currents (T-currents) and diminished T-channel-dependent cellular excitability in acutely isolated rat sensory neurons...
متن کاملRedox Modulation of T-Type Calcium Channels in Rat Peripheral Nociceptors
Although T-type calcium channels were first described in sensory neurons, their function in sensory processing remains unclear. In isolated rat sensory neurons, we show that redox agents modulate T currents but not other voltage- and ligand-gated channels thought to mediate pain sensitivity. Similarly, redox agents modulate currents through Ca(v)3.2 recombinant channels. When injected into peri...
متن کاملInhibition of T-type calcium channels protects neurons from delayed ischemia-induced damage.
Intracellular calcium increase is an early key event triggering ischemic neuronal cell damage. The role of T-type voltage-gated calcium channels in the neuronal response to ischemia, however, has never been studied. Using an in vitro model of ischemia-induced delayed cell death in rat organotypic hippocampal slice cultures, we show that T-type calcium channels inhibitors drastically reduce isch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 60 3 شماره
صفحات -
تاریخ انتشار 2001